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Abstract This paper provides a general framework for a spatial interaction model from the viewpoint
of “trip-chain” comprising several trips. To estimate the traffic volume distribution of trip-chains, we
proposed a new spatial interaction model based on the entropy maximizing model in 2010. In this paper
firstly, an efficient calculation method, based on the spatial interaction model, for the proposed trip-chain is
discussed. Furthermore, through these mathematical developments, the mathematical relationships between
the entropy model, Markov model, and the discrete choice model, which produce the same traffic volume
distribution of trip-chains, are clarified. These discussions not only support the entropy model proposed in
a previous paper by human sciences based on expected-utility theory but also cover the shortcomings of the
existing Markov model and the discrete choice model. It is often pointed out that the Markov model is a
pure stochastic model and there is no support from the individual behavior principle. Moreover, the discrete
choice model has the problem that the alternative set becomes huge as a result of dealing with trip-chaining
behavior, which has a high degree of freedom. We show, under certain assumptions, the Markov model
with individual behavior principle and the discrete choice model without enumerating the alternative set.
In addition, we clarify the characteristics between the sequential decision making (Markov model) and the
simultaneous decision making (discrete choice model) in terms of trip-chaining behavior.

Keywords: Transportation, spatial interaction model, trip-chain, entropy model,
Markov model, discrete choice model

1. Introduction

It is apparent from our everyday lives that the flow of people and things is a fundamental
element of creating a city. Some examples include the flow of people commuting to work
and schools, movement of products, mail, all types of information etc. Thus, attempts have
long been made to describe movements (flow) generated between spaces by using concise
mathematical formulae.

Wilson’s entropy model [33, 34] is an example that plays an important role in research
relating to “spatial interactions”. Wilson suggests a spatial interaction model based on
“the most realizable state” that depends on the concept of maximizing entropy. It gives
theoretical roots to the gravity model that is used analogously in physics. Subsequently,
entropy models have come to be applied to a wide range of issues such as prior probability
and relaxing constraint conditions [25]. Currently, a great number of spatial interaction
models exist other than the one proposed and analyzed herein, but many of these are well
served by the birth of the entropy model.

Traditional spatial interaction models have been developed to estimate simple movement
from origin to destination. However, people frequently visit several destinations during travel
and make a sequence of movements, e.g. “comparing several boutiques to buy clothes” and
“visiting multiple sightseeing areas in a journey”. In the field of traffic engineering, each
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movement from a place to another place is regarded as a “trip,” and these sequences of
movements are classified as a “trip-chain.” One of the features of a trip-chain is that each
trip that makes up a behavior would have reciprocal relation.

From the standpoint stated above, an entropy-maximizing model for trip-chaining behav-
ior was proposed in 2010 [5]. This entropy model can be regarded as a general extension of
Wilson’s entropy model. Some researchers also approached trip-chaining behaviors using the
entropy maximizing method [19, 26, 32]. Unfortunately, these researches have some restric-
tions in their formulations, which are difficult to interpret as generalizations of the traditional
entropy model. For example, both Tomlinson’s and Mazurkiewicz’s approaches [19, 32] are
limited by probable trip-chaining behaviors. In Roy et al. [26] by contrast, a variety of
behaviors are considered, but there is no constraint for destination (i.e. the number of
visitings).

However, the previous model [5] had problems concerning calculation efficiency. Specifi-
cally, estimating parameters needed a long time because the alternative set of trip-chaining
behavior became vast. To solve this problem, in this research, an efficient calculation
method for the proposed spatial interaction model for trip-chaining behavior is
discussed. Specifically, it is shown that when the prior probability and transport cost satisfy
certain conditions, the derivation of the total urban-transport cost and the adjustment coef-
ficient of each zone reduces to an inverse-matrix calculation. This is focused on the Markov
property of a trip-chain, and invokes Akamatsu’s idea [2] of Markov analysis of the chosen
route model.

Trip-chaining behaviors have been discussed in a number of research papers. One com-
mon method to analyze them is the Markovian approach. In particular, the series of research
works by Sasaki [27, 28, 30] is highly important, because the techniques to apply the Markov
model to a trip-chain are summarized in detail. Additionally, a variety of other models based
on the Markovian approach have also been proposed [8, 9, 12, 14, 17, 18]. Meanwhile, various
approaches besides the Markovian approach have also been developed including the discrete
choice model. These approaches focus on the formulation of the utility and alternatives of
trip-chaining behavior [1, 4, 6, 7, 16, 20–22, 29, 31].

Therefore, as the second purpose of this study, through mathematical developments for
efficient calculation, the mathematical relationships between our entropy model,
the Markov model, and the discrete choice model for the trip-chaining behavior
are clarified. These discussions not only clarify the theoretical rationale of our entropy
model but also cover the shortcomings of the existing Markov model and discrete choice
model. The Markov model is a pure stochastic model and there is no support from the
individual behavior principle. Therefore, the fact that the theoretical basis is weak when
applying the Markov model to trip-chaining behavior has been highlighted [15]. Moreover,
difficulty arises in the discrete choice model because it deals with behavior with a high degree
of freedom (such as trip-chaining behavior): the alternative set becomes vast [13]. Based
on the research presented herein, we show, under certain assumptions, the Markov model
with individual behavior principle and the discrete choice model without enumerating the
alternative set.

Furthermore, when expressing the trip-chains with the Markov model, in general: (i)
selection probability is provided for the first place of visit in the initial conditions, and (ii)
travel behavior to the next destination is expressed by a transition probability matrix. In
other words, by repeatedly multiplying together the transition probability matrices from (ii),
the transition from a particular destination zone to the next destination zone is described
sequentially and expresses the chain-type movements. As is also clear from this, the decision
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making process supposed by the Markov model can be said to be sequential. So it can be
thought that initially, people decide their initial place of visit, then once they reach it,
decide on their next behavior and once they arrive to their destination, decide on their next
behavior again, and so on and so forth.

On the other hand, in the discrete choice model it is supposed that a particular trip-chain
will be selected from a range of potential trip-chains (alternative set) based on the utility
coefficient. In this case, the decision making process assumed by the model is thought to be
simultaneous. In other words, people decide before they leave home (origin), anticipating
all of the series of travel behaviors.

In this way, the assumed decision making process is different in the two and, hence,
the traffic volume distribution achieved as a result should also be different. Nevertheless,
in this research, a Markov model, which produces the same traffic volume distribution of
trip-chains with the discrete choice model, will be proposed. This “paradox” indicates not
only the characteristics of both models but also the true nature of the decision making of
trip-chaining behavior.

This paper is structured as follows: In Section 2, the method based on the entropy-
maximizing concept to estimate trip-chaining behavior is summarized. In the discussion, the
doubly-constrained(origin-destination constrained) entropy model and the origin-constrained
entropy model are shown. This origin-constrained model becomes an important idea for the
next section. In Section 3, the derivation from the discrete choice model is also discussed.
Even in relation to the trip-chaining behavior, this derivation shows the theoretical basis of
the entropy model from the point of view of the individual behavior principle. In Section
4 it is shown that the parameters Ai, Bj , and γ in the doubly-constrained entropy model
for trip-chains can be efficiently calculated under certain assumptions. Moreover, in Section
5 the relationship between the entropy model, the Markov model, and the discrete choice
model is discussed. There is the assumption of Markovian property when we propose the
efficient calculation method. As can be understood from this, there is a strong link between
the entropy model and the Markov model for the trip-chaining behavior. Hence in Section
5, the elegant characteristics of the trip-chaining behavior in terms of our entropy model,
as well as the discrete choice model and the Markov model, is considered.

2. Entropy Model for Trip-Chaining Behavior

The entropy model for trip-chaining behavior proposed in [5] is summarized in this section.

2.1. Definition of a trip-chain

In this study, we define a trip-chain as a sequence of movements which

(i) starts from an origin zone (indexed by i),

(ii) visits several destination zones (indexed by j) successively, and

(iii) goes back to the same origin zone.

Suppose that i and j are the index origin zone and destination zone, respectively, and
define that a trip-chain ij is a series of Λ + 1 trips:

origin zone i→ destination zone j1 → · · · → destination zone jΛ → origin zone i, (1)

where j = [j1, j2, · · · , jΛ] is a Λ-dimensional vector. In addition, assume that tij is the
number of people who make a trip-chain ij.

Hence, j is interpreted as the “visiting path”, and Λ is different for each trip-chain.
Some examples are shown in Figure 1.
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Fig. 1: Examples of trip-chains

2.2. Formulation of doubly-constrained entropy model

Let i and j be index origin zones and destination zones, respectively (i ∈ {1, 2, · · · , I},
j ∈ {1, 2, · · · , J}). In addition, ij is a trip-chain defined by (1). Furthermore, let tij be
the number of individuals who make trip-chain ij. For simplicity, it is assumed that the
number of destinations in one trip-chain is less than L ( 1 ≤ Λ ≤ L). Here, L is the upper
limit of the total zones visited, and is constant in the model.

The main objective is to estimate tij for all trip-chain paths based on the entropy max-
imizing method. For this purpose, the following origin-destination constraints of tij are
supposed:

Oi =
∑
j∈Φ

tij (i ∈ {1, 2, · · · , I}) , (2)

Dj =
L∑
l=1

I∑
i=1

∑
{j∈Φ|jl=j}

tij (j ∈ {1, 2, · · · , J}) , (3)

where

Φ
def
= [individual’s alternative set of j] . (4)

In this study, it is assumed that the alternative set is all the trip-chaining behavior possible.
For example, in the case of J = 2, L = 2, Φ is

Φ =
{
[1], [2], [1, 1], [1, 2], [2, 1], [2, 2]

}
. (5)

Furthermore, we express the total number of trip-chains as T :

T =
I∑

i=1

∑
{j∈Φ}

tij

(
=

I∑
i=1

Oi ≤
J∑

j=1

Dj

)
. (6)

Besides the origin-destination constraints, we also assume that tij satisfies the total-
transport-cost constraint:

C =
I∑

i=1

∑
j∈Φ

tijcij , (7)
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where cij is the travel cost of trip-chain ij per individual.
I∑

i=1

∑
j∈Φ

includes all origin zones

and the visiting paths, and thus considers all trip-chain paths in the model.
Now, we derive probability w ({tij}) to find the distribution of trip-chains {tij}. For this

purpose, we first assume that pij is the prior probability of trip-chain ij, where

I∑
i=1

∑
j∈Φ

pij = 1. (8)

Using pij , we can now derive the probability w ({tij}) that obtains a distribution of
trip-chains {tij} as follows:

w ({tij}) =
T !

I∏
i=1

∏
j∈Φ

tij !

I∏
i=1

∏
j∈Φ

(pij)
tij . (9)

As in the traditional doubly-constrained model, let us maximize probability (9) subject
to constraints (2), (3), and (7). Note that it is more convenient to maximize lnw ({tij})
rather than w ({tij}) itself (this transition has no effect because a logarithmic function is a
monotonically increasing function). By using Stirling’s approximation N ! = N lnN − N ,
the Lagrangian function for this optimization problem is given by:

L ({tij} ;λ, µ, γ) = lnT !−
I∑

i=1

∑
j∈Φ

(tij ln tij − tij) +
I∑

i=1

∑
j∈Φ

(tij ln pij)

+
I∑

i=1

λi

(
Oi −

∑
j∈Φ

tij

)

+
J∑

j=1

µj

Dj −
L∑
l=1

I∑
i=1

∑
{j∈Φ|jl=j}

tij


+ γ

(
C −

I∑
i=1

∑
j∈Φ

tijcij

)
, (10)

where λi, µj, and γ are Lagrange multipliers. The tij ’s which maximize L and, therefore,
constitute the most probable distribution of trip-chains, are the solutions of

∂L

∂tij
= − ln tij + ln pij − λi − µj1 − · · · − µjΛ − γcij = 0 (11)

and constraint equations (2), (3), and (7). By assuming

Ai =
exp [−λi]

Oi

, (12)

Bj =
exp [−µj]

Dj

, (13)
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we consequently obtain

tij = AiOi

(
Λ∏
l=1

BjlDjl

)
pij exp [−γcij ] . (14)

Furthermore, substituting (14) in (2) and (3), we derive the following:

Ai =

{∑
j∈Φ

(
Λ∏
l=1

BjlDjl

)
pij exp [−γcij ]

}−1

, (15)

Bj =


L∑
l=1

I∑
i=1

∑
{j∈Φ|jl=j}

AiOi

 Λ∏
l∗=1
l∗ ̸=l

Bjl∗Djl∗

 pij exp [−γcij ]


−1

. (16)

This is a doubly-constrained entropy model for trip-chaining behavior.

2.3. Formulation of origin-constrained entropy model

As in the traditional entropy model, our entropy model for trip-chaining behavior enables the
derivation of four model cases by considering with or without origin-destination constraints.
In this sub-section, the origin-constrained entropy model is derived.

In particular, the probability of (9) subject to constraints (2) and (7) is maximized. The
Lagrangian function for this optimization problem is given by:

L ({tij} ;λ, γ) = lnT !−
I∑

i=1

∑
j∈Φ

(tij ln tij − tij) +
I∑

i=1

∑
j∈Φ

(tij ln pij)

+
I∑

i=1

λi

(
Oi −

∑
j∈Φ

tij

)

+ γ

(
C −

I∑
i=1

∑
j∈Φ

tijcij

)
, (17)

where λi and γ are Lagrange multipliers. The tij ’s, which maximize L, and that, therefore,
constitute the most probable distribution of trip-chains, are the solutions of

∂L

∂tij
= − ln tij + ln pij − λi − γcij = 0 (18)

and constraint equations (2) and (7).
By assuming (12), as in Section 2.2, we consequently obtain

tij = AiOipij exp [−γcij ] , (19)

Ai =

{∑
j∈Φ

pij exp [−γcij ]

}−1

. (20)

This is an origin-constrained entropy model for trip-chaining behavior.
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2.4. Estimation procedure

A procedure to estimate tij under constraints (2), (3), and (7) is undertaken. The objective
is to estimate the spatial interaction, which considers the trip-chain, under the situation
that the number of trip from origin zones Oi, the number of stops in destination zones Dj,
and total-transport-cost in the region are known.

First, substituting (14) in (7), gives

f (γ) =
I∑

i=1

∑
j∈Φ

AiOi

(
Λ∏
l=1

BjlDjl

)
pij exp [−γcij ] cij − C = 0. (21)

Using the preceding equations (15), (16), and (21), a calibration method that estimates
I + J + 1 parameters, namely Ai, Bj, and γ is made.

The algorithm proposed is as follows:

i) Starting values, γ = γ0, Bj = B0
j (j ∈ {1, 2, . . . , J}), and ξ = 0 are set.

ii) Calculate:

Aξ+1
i =

[∑
j∈Φ

{(
Λ∏
l=1

Bξ
jl
Djl

)
pij exp [−γcij ]

}]−1

(i ∈ {1, 2, . . . , I})

(from (15)).
Then, calculate

Bξ+1
j =


I∑

i=1

∑
{j∈Φ|jl=j}

Aξ+1
i Oi

 Λ∏
l∗=1
l∗ ̸=l

Bξ
jl∗
Djl∗

 pij exp [−γcij ]


−1

(j ∈ {1, 2, . . . , J})

(from (16)).

iii) If
∣∣∣Aξ+1

i − Aξ
i

∣∣∣ < εA (i ∈ {1, 2, . . . , I}) and
∣∣∣Bξ+1

k ≈ Bξ
j

∣∣∣ < εB (j ∈ {1, 2, . . . , J}) are sat-

isfied, where εA and εB are small positive numbers. Then go to iv). If not, set ξ = κ+ 1
and go back to ii).

iv) Set x0 = γκ and calculate:

xκ+1 = xκ − f (xκ) /f ′ (xκ)

iteratively until
∣∣xκ′+1 − xκ′∣∣ < εG is satisfied, where εG is a small positive number.

Then, set γξ+1 = xκ′+1.

v) Set ξ = ξ + 1 and go to ii).

Here, first derivative f ′ (x) in iv) is

f ′ (x) = −
I∑

i=1

∑
j∈Φ

AiOi

(
Λ∏
l=1

BjlDjl

)
pij exp [−xcij ] cij2. (22)

3. Derivation of the Entropy Model from the Discrete Choice Model

In this section, we derive the entropy model for the trip-chain by using the multinomial logit
model, which is the most popular model of discrete choice model. Even in relation to the
trip-chain, this derivation shows the theoretical basis of the entropy model from the point
of view of the individual behavior principle.
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3.1. Formulation

Consider carrying out a trip-chain ij in which an individual residing in origin zone i repeat-
edly visits destination zones j = [j1, j2, · · · , jΛ]. Suppose that the individuals in origin zone
i select the trip-chain ij, that maximizes their utilities, from the alternative set Φ for the
zones j. The utility Uj|i when an individual currently residing in origin zone i successively
visits the destination zone j is

Uj|i = Vj|i + ε. (23)

Here, Vj|i is a fixed utility term and ε is a stochastic variable with a Gumbel distribution
with scale parameter η. By assuming this, (23) becomes the definition of utility in the
multinomial logit model, so the probability Pj|i that an individual in origin zone i selects
the trip-chain ij becomes

Pj|i =
exp

[
ηVj|i

]∑
j∈Φ

exp
[
ηVj|i

] . (24)

Thus, if the number of individuals in origin zone i was Oi, the number of individuals tij
conducting the trip-chain ij can be calculated as follows:

tij = Oi · Pj|i = Oi

exp
[
ηVj|i

]∑
j∈Φ

exp
[
ηVj|i

] . (25)

3.2. Derivation of origin-constrained model

The following assumption is made to obtain a specific function format for the fixed term
Vj|i:

Vj|i = V ′
j|i − b cij . (26)

Equation (26) breaks down utility into two terms: the term cij relating to the transport
cost and the term V ′

j|i determined by other remaining factors. Moreover, in the context of
this research, utility varies inversely with the transport cost cij of a direct trip.

If (26) is substituted into (25),

tij = Oi

exp
[
ηV ′

j|i

]
exp [−γcij ]∑

j∈Φ

exp
[
ηV ′

j|i
]
exp [−γcij ]

(27)

is obtained(γ = bη).
Here, if

Ai =

{∑
j∈Φ

exp
[
ηV ′

j|i
]
exp [−γcij ]

}−1

, (28)
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then tij can be rewritten in the following concise format:

tij = AiOi exp
[
ηV ′

j|i
]
exp [−γcij ] . (29)

If exp
[
ηV ′

j|i

]
is considered to be equivalent to prior probability, (29) is the origin-constrained

entropy model (19) for the trip-chain. More specifically, a relationship between pij and

exp
[
ηV ′

j|i

]
is required such that

pij ∝ exp
[
ηV ′

j|i
]
. (30)

In other words, even the entropy model for a trip-chain is supported by human sciences
based on expected-utility theory.

Furthermore, we suppose the following specific format for utility’s fixed term V ′
j|i:

V ′
ij = a lnSj1 + a lnSj2 + · · ·+ a lnSjΛ − Λh+ ln δij . (31)

The meaning of (31) is that the utility of each visited zone should increase. In (31), after
setting the attractiveness of zone j to be Sj, this increase is given by the linear sum of
their logarithms. The idea is similar to that of the Huff model [10] for direct trips. In
addition, for the trip-chain, we consider the following: First, the reduction in the utility of
opportunity cost. Basically, the utility increases with an increase in the number of zones
visited because of the increase in attractiveness, thus, it is possible that a selection be made
such that visits continue infinitely. Common sense, however, tells us that this type of thing
cannot occur because individuals consider the tradeoff of opportunity cost lost through a
visit and the attractiveness of the zone. Thus, in (31), the opportunity cost lost through
one visit to the zone is h, and it was supposed that −Λh and utility decrease linearly in
response to the visits to the destination zones. Finally, we consider ln δij . No matter how
attractive a trip-chain is, if the trip-chain is not recognized by an individual it will never be
selected. Thus, δij is used to express the existence of recognition. Noting that δij spans the
range 0-1, ln δij is

ln δij =

{
0 (when trip-chain ij is recognized)

−∞ (when trip-chain ij is not recognized)
. (32)

If this is added to the utility, for the unrecognized route, its utility becomes −∞ and it
will not be selected.

If (31) is substituted into (25),

tij = δijAiOi

(
Λ∏
l=1

Sα
jl
η′

)
exp [−γcij ] (33)

is obtained(α = aη, γ = bη, η′ = exp [−ηh]), which is equivalent to the case when the prior
probability in the origin-constrained entropy model (19) is assumed to be

pij ∝ δij

(
Λ∏
l=1

Sα
jl
η′

)
. (34)
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3.3. Derivation of doubly-constrained model

Within the traditional spatial interaction model, the doubly-constrained entropy model was
derived by the discrete choice model [3]. By generalizing this argument, it is possible to
show that the doubly-constrained entropy model could be derived by the discrete choice
model, even for a trip-chain in this study.

Now suppose that Dj gives the total number of visitors at destination zone j. At this
point the following relationship must hold between SJ

j=1 and Dj:

Dj =
L∑
l=1

I∑
i=1

∑
{j∈Φ|jl=j}

tij

= Sα
j η

′
L∑
l=1

I∑
i=1

∑
{j∈Φ|jl=j}

δijAiOi

(
Λ∏

l∗=1
l∗ ̸=l

Sα
jl∗
η′

)
exp [−γcij ] . (35)

Therefore, assuming Bj as follows:

Bj =


L∑
l=1

I∑
i=1

∑
{j∈Φ|jl=j}

δijAiOi

(
Λ∏

l∗=1
l∗ ̸=l

Sα
jl∗
η′

)
exp [−γcij ]


−1

, (36)

we obtained

Sα
j η

′ = BjDj. (37)

Substituting these results into Eqs. (28), (29), and (36) gives

tij = δijAiOi

(
Λ∏
l=1

BjDj

)
exp [−γcij ] , (38)

Ai =

{∑
j∈Φ

δij

(
Λ∏
l=1

BjDj

)
exp [−γcij ]

}−1

, (39)

Bj =


L∑
l=1

I∑
i=1

∑
{j∈Φ|jl=j}

δijAiOi

(
Λ∏

l∗=1
l∗ ̸=l

Bjl∗Djl∗

)
exp [−γcij ]


−1

. (40)

In other words, by taking

pij ∝ δij , (41)

(38)—(40) are equivalent to the doubly-constrained entropy model for the trip-chaining
behavior.

4. Efficient Computation of Parameters

In Section 2.4, the sequential computation method that uses the relational equation of the
adjustment coefficient was explained. This approach has the problem that, whatever prior
probability is supposed, the calculation time becomes long even though the parameters can
be determined. To avoid this issue, this section presents a method for efficiently calculating
the parameters Ai, Bj, and γ of the doubly-constrained entropy model for trip-chains.
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4.1. Assumptions in calculation

First, we explain the requisite conditions for applying the computation method of this study.
More specifically, we explain the conditions that must be satisfied by the total number of
zones visited, L, the prior probability pij of the trip-chain, ij, and the transport cost, cij .

Regarding the upper limit L of the total zones visited, we assume herein after that L→
∞. By setting this, we may generate trip-chains that cause circuit movements to continue
infinitely, but if the assumption discussed later were applied regarding prior probability, the
following would be true, so this problem would be avoided:

lim
Λ→∞

pij = 0. (42)

The next assumption is made for the prior probability pij of the trip-chain ij. In
preparation for this, the following transition probabilities are defined:

pij
def
= [the transition probability from the origin zone i to the destination zone j] , (43)

pjj∗
def
= [the transition probability from the destination zone j to the destination zone j∗] ,

(44)

pji
def
= [the transition probability from the destination zone j to the origin zone i] . (45)

The prior probability pij for each trip-chain ij is assumed to be a product for each trip:

pij = pij1 ×
Λ−1∏
l=1

pjljl+1
× pjΛi. (46)

The idea of setting the prior probability pij amounts to assuming the Markov property.
Finally, an assumption is made regarding the travel cost cij for one trip-chain of the

trip-chain ij. To this end, we define the following to be the travel cost for each trip:

cij
def
= [transport cost from the origin zone i to the destination zone j] , (47)

cjj∗
def
= [transport cost from the destination zone j to the destination zone j∗] , (48)

cji
def
= [transport cost from the destination zone j to the origin zone i] . (49)

In addition, the travel cost cij of the trip-chain in the following argument is given by the
sum of the interzonal transport costs:

cij = cij1 +
Λ−1∑
l=1

cjljl+1
+ cjΛi. (50)

If the prior probability pij and transport cost cij are set as mentioned above, pij exp [−γcij ]
can be written as

pij exp [−γcij ] = Cij1 × Cj1j2 × · · · × CjΛ−1jΛ × CjΛi, (51)

and so can be broken down into a multiplication for each trip, where

C∗∗
def
= p∗∗ exp [−γc∗∗] . (52)

This property plays a vital role in deriving the parameters.
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4.2. Efficient calculation of Ai

The method for efficiently calculating the defining equation (15) of Ai is explained in this
section. The equation for Ai

−1 can be given as follows:

A−1
i =

∑
j∈Φ

(
Λ∏
l=1

BjlDjl

)
pij exp [−γcij ]

=
J∑

j1=1

Bj1Dj1Cij1Cj1i︸ ︷︷ ︸
i[j1]

+
J∑

j1=1

J∑
j2=1

Bj1Dj1Bj2Dj2Cij1Cj1j2Cj2i︸ ︷︷ ︸
i[j1j2]

+ · · · . (53)

To calculate this efficiently, we define the following sequence
{
Y n
ji

}
:

Y 0
ji = Cji, (54)

Y n+1
ji =

J∑
j∗=1

Bj∗Dj∗Cjj∗Y
n
j∗i. (55)

The meaning of
{
Y n
ji

}
is

Y n
ji

def
= [the sum of adjustment-coefficient components BjDj at n destinations

and C∗∗ associated with returning to origin i after n visits to a zone from j,

across all possible combinations of n visits]. (56)

By using

GY
def
=


B1D1C11 B2D2C12 · · · BJDJC1J

B1D1C21 B2D2C22 · · · BJDJC2J
...

. . .
...

B1D1CJ1 B2D2CJ2 · · · BJDJCJJ

 , (57)

the following can be expressed based on (55):


Y n+1
1i

Y n+1
2i
...

Y n+1
Ji

 = GY


Y n
1i

Y n
2i
...

Y n
Ji

 , (58)

and we find
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
∑∞

n=0 Y
n
1i∑∞

n=0 Y
n
2i

...∑∞
n=0 Y

n
Ji

 = (I −GY )
−1


Y 0
1i

Y 0
2i
...

Y 0
Ji

 . (59)

Additionally, (53) can be rearranged as

A−1
i =

J∑
j=1

BjDjCij Cji︸︷︷︸
Y 0
ji

+
J∑

j=1

BjDjCij

J∑
j2=1

Bj2Dj2Cjj2Cj2i︸ ︷︷ ︸
Y 1
ji

+ · · ·

=
J∑

j=1

BjDjCij

∞∑
n=0

Y n
ji . (60)

Therefore, Ai can be calculated by substituting (59) into (60).

4.3. Efficient calculation of Bj

An efficient method of calculating the defining equation (16) for Bj is now derived. As
expected, Bj

−1 is obtained as follows:

B−1
j =

∞∑
l=1

I∑
i=1

∑
{j∈Φ|jl=j}

AiOi

(
Λ∏

l∗=1
l∗ ̸=l

Bjl∗Dkl∗

)
pij exp [−γcij ]

=
I∑

i=1

AiOiCijCji︸ ︷︷ ︸
i[j]

+
I∑

i=1

J∑
j2=1

AiOiBj2Dj2CijCjj2Cj2i︸ ︷︷ ︸
i[jj2]

+
I∑

i=1

J∑
j1=1

AiOiBj1Dj1Cij1Cj1jCji︸ ︷︷ ︸
i[j1j]

+ · · · . (61)

To calculate this efficiently, in addition to
{
Y n
ji

}
, the sequence

{
Xn

ij

}
is defined as follows:

X0
ij = AiOiCij, (62)

Xn+1
ij =

ρ

J

J∑
j∗=1

Xn
ij∗Bj∗Dj∗Cj∗j. (63)
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The meaning of Xn
ij is

Xn
ij

def
= [sum of the adjustment-coefficient components BjDj at the n destinations

and the adjustment-coefficient components AiOi at the origin zones

and C∗∗ associated with the visit to j,

after n visits to a zone from i, across all possible combinations of n visits]. (64)

Here, assuming

GX =
ρ

J


B1D1C11 B1D1C12 · · · B1D1C1J

B2D2C21 B2D2C22 · · · B2D2C2J
...

. . .
...

BJDJCJ1 BJDJCJ2 · · · BJDJCJJ

 (65)

and (63), we can write


Xn+1

i1

Xn+1
i2
...

Xn+1
iJ


T

=


Xn

i1

Xn
i2
...

Xn
iJ


T

GX . (66)

By using the same argument as in the previous section, we obtain
∑∞

n=0 X
n
i1∑∞

n=0 X
n
i2

...∑∞
n=0 X

n
iJ


T

=


X0

i1

X0
i2
...

X0
iJ


T

(I −GX)
−1 . (67)

Furthermore (61) can be rewritten as

B−1
j =

I∑
i=1

(AiOiCij)︸ ︷︷ ︸
X0

ij

(Cji)︸ ︷︷︸
Y 0
ji

+
I∑

i=1

(AiOiCij)︸ ︷︷ ︸
X0

ij

(
J∑

j2=1

Bj2Dj2Cjj2Cj2i

)
︸ ︷︷ ︸

Y 1
ji

+
I∑

i=1

(
J∑

j1=1

AiOiBj1Dj1Cij1Cj1j

)
︸ ︷︷ ︸

X1
ij

(Cji)︸︷︷︸
Y 0
ji

+
I∑

i=1

X0
ijY

2
ji +

I∑
i=1

X1
ijY

1
ji +

I∑
i=1

X2
ijY

0
ji + · · ·

=
I∑

i=1

(
∞∑
n=0

Xn
ij ×

∞∑
n=0

Y n
ji

)
. (68)

Hence if (59) and (67) are substituted into (68), B−1
j can be obtained.
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4.4. Efficient calculation of C

Finally, the derivation of parameter γ, relating to the total-transport-cost within the city, is
explained herein. However, since γ itself does not have a defining equation, the calculation
method for the estimated value of the total-transport-cost Ĉ (γ) is given by a certain distance
resistance coefficient γ.

In preparation for this, the following three will be derived for cases when the distance
resistance coefficient γ has been provided:

TOD
ij (γ)

def
= [the number of individuals moving from origin zone i to destination zone j] ,

(69)

TDD
jj∗ (γ)

def
= [the number of individuals moving from destination zone j to destination zone j∗] ,

(70)

TDO
ji (γ)

def
= [the number of individuals returning home from destination zone j to origin zone i] .

(71)

The number of those moving from origin to destination i→ j, TOD
ij (γ), will be derived.

This can be calculated as below by utilizing the aforementioned sequence
{
Y n
ji

}
:

TOD
ij (γ) =ti[j] +

J∑
j2=1

ti[jj2] + · · ·

=AiOiBjDjCij Cji︸︷︷︸
Y 0
ji

+ AiOiBjDjCij

J∑
j2=1

Bj2Dj2Cjj2Cj2i︸ ︷︷ ︸
Y 1
ji

+ · · ·

=AiOiBjDjCij

∞∑
n=0

Y n
ji . (72)

Next, the number of those touring around j → j∗, TDD
jj∗ (γ) will be derived. This can

also be calculated as below by utilizing the sequence
{
Xn

ij

}
and

{
Y n
ji

}
:
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TDD
jj∗ (γ) =

I∑
i=1

ti[jj∗] +
I∑

i=1

J∑
j3=1

ti[jj∗j3] +
I∑

i=1

J∑
j1=1

ti[j1jj∗] + · · ·

=
I∑

i=1

(AiOiCij)︸ ︷︷ ︸
X0

ij

(BjDjBj∗Dj∗Cjj∗) (Cj∗i)︸ ︷︷ ︸
Y 0
j∗i



+
I∑

i=1


(AiOiCij)︸ ︷︷ ︸

X0
ij

(BjDjBj∗Dj∗Cjj∗)

(
J∑

j3=1

Bj3Dj3Cj∗j3Cj3i

)
︸ ︷︷ ︸

Y 1
j∗i



+
I∑

i=1


(

J∑
j1=1

AiOiBj1Dj1Cij1Cj1j

)
︸ ︷︷ ︸

X1
ij

(BjDjBj∗Dj∗Cjj∗) (Cj∗i)︸ ︷︷ ︸
Y 0
j∗i


+ · · ·

=
I∑

i=1

{
∞∑
n=0

Xn
ij × (BjDjBj∗Dj∗Cjj∗)×

∞∑
n=0

Y n
ji

}
. (73)

Finally, there is the number of those transporting back home from j → i, TDO
ji (γ) and

this is as follows:

TDO
ji (γ) =ti[j] +

J∑
j1=1

ti[j1j] + · · ·

=(AiOiCij)︸ ︷︷ ︸
X0

ij

(BjDjCji)

+

(
J∑

j1=1

AiOiBj1Dj1Cij1Cj1j

)
︸ ︷︷ ︸

X1
ij

(BjDjCji)

+ · · ·

=
∞∑
n=0

Xn
ijBjDjCji. (74)

In this way, if the obtained TOD
ij (γ), TDD

jj∗ (γ), and TDO
ji (γ) are each multiplied by the

inter-zone movement cost (47), (48), and (49) then the estimated value of the total cost for
the whole city Ĉ (γ) can be obtained:
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Ĉ (γ) =
I∑

i=1

J∑
j=1

TOD
ij (γ) cij +

J∑
j=1

J∑
j∗=1

TDD
jj∗ (γ) cjj∗ +

J∑
j=1

I∑
i=1

TDO
ji (γ) cji. (75)

4.5. Method of parameter determination utilizing inverse matrix

The discussions in Section 4.2-4.4 showed that the adjustment coefficients Ai and Bj, and

the estimated value of the total-transport-cost, Ĉ (γ), can be calculated efficiently. If these
are used, reiteration calculations used to determine the parameters can be conducted faster
than by using the defining equations directly. However, in this case, the Newton-Raphson
method, which was used when estimating the distance resistance coefficient γ in Section 2.4
iv) cannot be applied. This is because the differential of total cost constraint conditions
equivalent to (22) cannot be analyzed for each trip. Therefore, to estimate the distance
resistance coefficient γ using (75), an algorithm that doesn’t use derivatives needs to be
applied.

As one example of this, the procedure for an iterative method using golden section
method [11] is shown:

i) Set the initial value as γ = γ0, Bj = B0
j (j ∈ {1, 2, . . . , J}), ξ = 0.

ii) Calculate
∞∑
n=0

Y n
ji (i ∈ {1, 2, . . . , I}. j ∈ {1, 2, . . . , J}) using Bξ

j (← depends on (59)).

Calculate Aξ+1
i =

{
J∑

j=1

Bξ
jD

ξ
jCij

∞∑
n=0

Y n
ji

}−1

(i ∈ {1, 2, . . . , I}) (← depends on (60)).

Calculate
∞∑
n=0

Xn
ij (i ∈ {1, 2, . . . , I}. j ∈ {1, 2, . . . , J}) using Aξ+1

i , Bξ
j (← depends on

(67)).

Calculate Bξ+1
j =

{
I∑

i=1

(
∞∑
n=0

Xn
ij ×

∞∑
n=0

Y n
ji

)}−1

(j ∈ {1, 2, . . . , J}) (← depends on (68)).

iii) Go to iv) if
∣∣∣Aξ+1

i − Aξ
i

∣∣∣ < εA (i ∈ {1, 2, . . . , I}) and
∣∣∣Bξ+1

j −Bξ
j

∣∣∣ < εB (j ∈ 1, 2, . . . , J}),
where εA and εB are small positive numbers. Otherwise go to ii) by setting ξ = ξ + 1.

iv) Set x0 = γξ and set the counter to be κ = 0. By applying the golden section method on
a positive integer εG that is small enough, and stop at the point when:

|f (xκ)| < εG.

Let γξ+1 = xκ′+1.

v) Finish if γξ+1 = γξ. Otherwise set ξ = ξ + 1 and go to ii).

Reiterate the above until there is convergence. Furthermore, the function f (x) in the
aforementioned iv) is as shown below:

f (x) =
I∑

i=1

J∑
j=1

TOD
ij (x) cij +

J∑
j=1

J∑
j∗=1

TDD
jj∗ (x) cjj∗ +

J∑
j=1

I∑
i=1

TDO
ji (x) cji − C. (76)
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5. Derivation of Markov Model

In the previous section, the efficient calculation method for determining the parameters in
trip-chains was discussed. It was shown that the adjustment coefficients such as Ai or Bj

return to an inverse matrix calculation but there is the assumption that the prior probability
has the Markovian property. As can be understood from this, under the assumptions in
Section 4.1, there is a strong link between the Markov model and the entropy model for
the trip-chaining behavior. Hence in this section, the relationship between the doubly-
constrained entropy model, as well as the discrete choice model and the Markov model for
the trip-chains is considered.

5.1. Markov process derived by the doubly-constrained model

Firstly, the relationship between the doubly-constrained entropy model and the Markov
model of the trip-chains will be discussed. Specifically, under the assumptions of Section
4.1, the traffic volume distribution estimated by the doubly-constrained entropy model for
the trip-chains can also be denoted by the Markov model. In preparation for this, the
following two items are calculated:

(i) the proportion of tourists who visit j as the k + 1th destination out of the tourists who
visit [j1, · · · , jk] by the kth visit,

(ii) the proportion of tourists returning without visiting the k + 1th destination out of the
tourists who visit [j1, · · · , jk] by the kth visit.

Firstly, the proportion of tourists that visit j on their k+1th destination r {jk+1 = j|i[j1, · · · , jk]}
out of the tourists who visit [j1, · · · , jk] by the kth visit having originated from origin zone
i is derived. In other words,

r {jk+1 = j|i[j1, · · · , jk]}
def
=

the number of tourists whose path to the k + 1th destination is i [j1, · · · , jk, j]
the number of tourists whose path to the kth destination is i [j1, · · · , jk]

(77)

should be sought. Here,

[the number of tourists whose path to the kth destination is i [j1, · · · , jk]]

= ti[j1,··· ,jk] +
J∑

jk+1=1

ti[j1,··· ,jk,jk+1] + · · ·

= AiOiBj1Dj1 · · ·BjkDjkCij1 · · ·Cjk−1jk

Cjki︸︷︷︸
Y 0
jki

+
J∑

jk+1=1

Bjk+1
Djk+1

Cjkjk+1
Cjk+1i︸ ︷︷ ︸

Y 1
jki

+ · · ·


= AiOiBj1Dj1 · · ·BjkDjkCij1 · · ·Cjk−1jk

∞∑
n=0

Y n
jki
. (78)

Similarly,
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[the number of tourists whose path to the k + 1th destination is i [j1, · · · , jk, j]]

= AiOiBj1Dj1 · · ·BjkDjkBjDjCij1 · · ·Cjk−1jkCjkj

∞∑
n=0

Y n
ji . (79)

Therefore, r {jk+1 = j|i[j1, · · · , jk]} can be obtained by substituting (78) and (79) into (77),
and thus the following can be obtained:

r {jk+1 = j|i[j1, · · · , jk]}

=

AiOiBj1Dj1 · · ·BjkDjkBjDjCij1 · · ·Cjk−1jkCjkj

∞∑
n=0

Y n
ji

AiOiBj1Dj1 · · ·BjkDjkCij1 · · ·Cjk−1jk

∞∑
n=0

Y n
jki

= BjDjCjkj

∑∞
n=0 Y

n
ji∑∞

n=0 Y
n
jki

. (80)

Next, the proportion of tourists returning home without visiting the k + 1th destination
r {home|i[j1, · · · , jk]} out of those tourists who visit [j1, · · · , jk] as a destination up to the
kth destination having originated from origin zone i will be derived. In other words,

r {home|i[j1, · · · , jk]}
def
=

ti[j1,··· ,jk]
the number of tourists whose path to the k th destination is i [j1, · · · , jk]

. (81)

This, based on (78), becomes

r {home|i[j1, · · · , jk]} =
AiOiBj1Dj1 · · ·BjkDjkCij1 · · ·Cjk−1jkCjki

AiOiBj1Dj1 · · ·BjkDjkCij1 · · ·Cjk−1jk

∞∑
n=0

Y n
jki

=
Cjki∑∞
n=0 Y

n
jki

. (82)

From (80) and (82), under the assumptions in Section 4.1, it can be seen that as a result of tij
being split into factors for each trip, there is no need to depend on the information regarding
the path taken before arriving at a particular zone jk, and hence the proportion of the next
trip to take place can be determined without having to depend on the past. This means
that the travel behavior can be expressed utilizing the Markov model. Therefore, if the
transition probability matrix is defined using (80) and (82), the traffic volume distribution
estimated by the entropy model can also be described using the Markov model.

Hence, we will try to describe the traffic volume distribution estimated by the entropy
model as an absorbing Markov process based on the aforementioned arguments. What must
be noted here is that the specific values of (80) and (82) vary depending on i and so the
Markov process has to be denoted for each origin zone.
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Now, think of S = {SH,S1, · · · ,SJ} as the state space S. Here, SH is the state in
which a particular tourist (after ending travel) is returning home andSj is the state in which
a particular tourist is visiting zone j. Moreover, SH is an absorbing state and S1, · · · ,SJ

are transient states. Then, of the total number of tourists, Oi, departing origin zone i, the
number of those in state S∗ at nth step is expressed as πi

∗ (n) and the following vector is
defined:

πi (n) =
[
πi
H (n) , πi

1 (n) , · · · , πi
J (n)

]
. (83)

In other words, πi
j (n) is the number who are in zone j as the nth destination out of the

tourists who originated from origin zone i, and πi
H (n) is the number who have already

returned home having visited less than n places out of the tourists who originated from
origin zone i. As apparent from the definition, it should be noted that the following is
established for an optional n:

πi
H (n) +

J∑
j=1

πi
j (n) = Oi. (84)

Now, the initial state of the Markov processis calculated i.e. πi (1). First, πi
H (1) is

clearly

πi
H (1) = [the number of people who return home at step 1]

= 0. (85)

Moreover, with regards to πi
j (1), it can be calculated as

πi
j (1) = [the number of tourists who depart from zone i with the first place of visit as j]

= TOD
ij (γ)

= AiOiBjDjCij

∞∑
n=0

Y n
ji . (86)

In other words, the initial state πi (1) is

πi (1) =

 0︸︷︷︸
πi
H(1)

, AiO1B1D1Ci1

∞∑
n=0

Y n
1i︸ ︷︷ ︸

πi
1(1)

, · · · , AiOJBJDJCiJ

∞∑
n=0

Y n
Ji︸ ︷︷ ︸

πi
J (1)

 . (87)

Next, the transition probability matrix Pi will be shown. For this, the following should
be applied using (80) and (82):
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H 1 · · · J

Pi =

H

1

...

J



1 0 · · · 0
C1i∑∞
n=0 Y

n
1i

B1D1C11

∑∞
n=0 Y

n
1i∑∞

n=0 Y
n
1i

BJDJC1J

∑∞
n=0 Y

n
Ji∑∞

n=0 Y
n
1i

...
...

. . .
...

CJi∑∞
n=0 Y

n
Ji

B1D1CJ1

∑∞
n=0 Y

n
1i∑∞

n=0 Y
n
Ji

· · · BJDJCJJ

∑∞
n=0 Y

n
Ji∑∞

n=0 Y
n
Ji


. (88)

Here, Pi is a transition probability matrix and hence the sum of each line is 1:

Cji∑∞
n=0 Y

n
ji

+
J∑

j∗=1

Bj∗Dj∗Cjj∗

∑∞
n=0 Y

n
j∗i∑∞

n=0 Y
n
ji

= 1. (89)

It is clear that traffic volume amount derived by the Markov process shown above is equiv-
alent to that estimated by a doubly-constrained entropy model for trip-chains. In other
words, it has been made apparent that the entropy model for trip-chains described under
the assumptions of Section 4.1 can be described by a Markov model.

5.2. Simultaneous decision making and sequential decision making

Finally, the meaning of (87) and (88) will be considered. For this it would be useful to
examine the decision making process supposed by the Markov model and the discrete choice
model.

As explained in Introduction, the decision making process supposed by the Markov model
can be regarded as sequential. Meanwhile, that assumed by the discrete choice model is
regarded as simultaneous. In this way, the assumed decision making process is different in
the two models and, hence, the traffic volume distribution achieved in each model should
also be different. Nevertheless, in (87) and (88), a Markov model, which produces the same
traffic volume distribution of trip-chains with the discrete choice model, was proposed. In
many existing research utilizing Markov models, the classical spatial interaction model (for
example the Huff model) is often assumed when setting the transition probabilities (for
example [23, 24, 28]). Simply put, it is a formulation considering only Sα

j∗η
′ exp [−γcjj∗ ]

from (88). Contrastingly, the transition probabilities in this research have the component∑∞
n=0 Y

′′
j∗i

n added (the
∑∞

n=0 Y
′′
j∗i

n in the denominator is an adjustment term to make the
row-sum 1 and hence is not essential). In other words, by using the weighting Yji, the
sequential decision making (Markov model) and the simultaneous decision making (discrete
choice model) have the same structure. Conversely, if

∑∞
n=0 Y

′′
j∗i

n is not weighted by the
transition probabilities, the traffic volume distribution obtained from the two models will
be different.

Moreover, it should be noted that even in the discrete choice model, it was assumed that
the “utility function is split into sums for each trip”. Only based on this supposition, the
movement behavior of people achieves the Markov property. If the above assumptions are
not satisfied (for example, the loss of opportunity cost changes non-linearly in respect to
the number of visited zones), an equivalent Markov model cannot be constructed.

Although under several constraints stated above, the equivalence of the Markov model
and the discrete choice model in terms of the traffic volume distribution of trip-chains
has become apparent. Based on this argument, we can cover the several shortcomings
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of the existing Markov model and the discrete choice model. In the Markov model, (i)
the theoretical vulnerability in applying the Markov model to the trip-chains and (ii) the
suitability of the sequential decision making process were pointed out as problems. By the
discussion in this section, we consider that we could resolve the theoretical vulnerability of
(i). Moreover, even (ii) should be resolved by interpreting it as follows. The main idea that
the sequential decision making process is not appropriate for trip-chains is based on the fact
that the transitions between destination zones are described by a classical spatial interaction
model. As a result of being described by information only relating to the destination zone
(Sα

j∗η
′ exp [−γcjj∗ ]), the danger of the true nature of the trip-chaining behavior being lost

was pointed out. On the other hand, in the model proposed in this paper, the factor∑∞
n=0 Y

′′
j∗i

n is considered. This factor is similar to the weighting taking into consideration
the various motion behaviors in the future. In this case, it is clear that the trip-chaining
behavior’s characteristic, that is “decision making based on future consideration”, is not
lost. Hence, under the formulations in this paper, the problems previously raised in respect
to the Markov model have been avoided.

Moreover, by the application of the discrete choice model, the discussion in this paper
provides essential suggestions to enumerate the alternative set, which is often raised as
a difficult issue. If simultaneous decision making is assumed, the number of alternative
set becomes huge, since various trip-chaining behaviors are considered, and its calculation
becomes complicated. However, this issue is precisely the same structure with the calculation
of Ai and Bj. Therefore, under the assumptions used in this research, it is clear that there
is no need for complicated calculations and it could result in inverse matrix calculation. By
the relationship between the Markov model and the discrete choice model through entropy
model presented in this paper, we consider to propose the Markov model with individual
behavior principle and the discrete choice model without enumerating the alternative set.

6. Conclusion

This paper provides a general framework for a spatial interaction model from the viewpoint
of “trip-chain” comprising several trips. Specifically, the classical entropy model by Wilson
et al. [33] has been expanded and a spatial interaction model for trip-chains constructed.
In this paper firstly, mathematical discussion was conducted for efficiently calculating the
entropy model for trip-chains. In our previous models, there is generally the need to derive
the adjustment coefficients for satisfying the origin/destination constraint conditions, but
in the previous models for trip-chains, the defining equations for the adjustment coefficients
were complicated. To avoid this problem, in this research focus is given to the breaking
down of the trip-chains and it has been shown that under certain conditions, the adjustment
coefficients resolve to an inverse matrix calculation.

Furthermore, through these mathematical developments, the mathematical relationships
between the entropy model, Markov model, and the discrete choice model, which produce the
same traffic volume distribution of trip-chains, were clarified. Discussions not only supported
the entropy model proposed in previous paper by human sciences based on expected-utility
theory but also covered the shortcomings of the existing Markov model and the discrete
choice model. It was often pointed out that Markov model was a pure stochastic model and
there were no support from individual behavior principle. Moreover, in the discrete choice
model the alternative set becomes huge as a result of dealing with trip-chaining behavior,
which had a high degree of freedom. This current research shows, under certain assumptions,
the Markov model with individual behavior principle and the discrete choice model without
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enumerating the alternative set. In addition, we clarified the characteristics between the
sequential decision making (Markov model) and the simultaneous decision making (discrete
choice model) in terms of trip-chaining behavior.
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